Home
Class 11
MATHS
If cos(alpha+beta)=0 then sin^(2)alpha+s...

If `cos(alpha+beta)=0` then `sin^(2)alpha+sin^(2)beta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If cot(alpha+beta)=0, then sin(alpha+2 beta) can be (a)-sin alpha(b)sin beta(c)cos alpha(d)cos beta

tan (alpha + beta) tan (alpha-beta) = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha-sin ^ (2) beta)

If cos (alpha+beta)=0 , then sin(alpha-beta) canbe reduced to : (a) cosbeta (b) cos2beta ( c) sinalpha (d) sin2alpha

If cot(alpha+beta)=0 then sin(alpha+2 beta) is equal to a.sin alpha b.cos2 beta c.cos alpha d.sin2 alpha

The value of sin^2 alpha cos^2 beta + cos^2 alpha sin^2 beta + sin^2 alpha sin^2 beta +cos^2 alpha cos^2 beta is

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

sin ^ (2) alpha + cos ^ (2) (alpha + beta) + 2 sin alpha sin beta cos (alpha + beta) = (i) sin ^ (2) (alpha) (ii) sin ^ (2) (beta ) (iii) cos ^ (2) (alpha) (iv) cos ^ (2) (beta)

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is