Home
Class 12
MATHS
The value of lim(n rarr oo)sum(i=1)^(n)(...

The value of `lim_(n rarr oo)sum_(i=1)^(n)(i)/(n^2)sin((pi i^(2))/(n^(2)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)((1)/(2^(n))) is

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

The value of the lim_(n rarr oo)tan{sum_(r=1)^(n)tan^(-1)((1)/(2r^(2)))}_( is equal to )

lim_(n rarr oo)(pi n)^(2/n) =

lim_(n rarr oo)sum_(i=1)^(n)(5)/(n^(3))(i-1)^(2) equals

The value of Lim_(n rarr oo)sum_(k=1)^(n)(n-k)/(n^(2))cos((4k)/n) equals

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)