Home
Class 12
MATHS
If |z-1| = |z-5| and |z|=sqrt(13) then f...

If `|z-1| = |z-5|` and `|z|=sqrt(13)` then find `|Im(z)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-1|=|z-5| and |z|=sqrt13 ,then find |Im(z)|

If |z-1|=|z-5| and Re(z)=k ; then evaluate k

If z = (sqrt(5)+3i) , find z^(-1) .

If |z_(1)|=|z_(2)|=|z_(3)|=1 are twu complex numbers such that |z_(1)|=|z_(2)|=sqrt(2) and |z_(1)+z_(2)|=sqrt(3), then |z_(1)-z_(2)| equation

" 3.If "|z-1|=|z-5|" and "Re(z)=k;" then evaluate "k

if z_(1)=2-i, and z_(2) = 1+ i, then find Im(1/(z_(1)z_(2)))

If z_(1)andz_(2) both satisfy z+ddot z=2|z-1| and arg(z_(1)-z_(2))=(pi)/(4), then find Im(z_(1)+z_(2))

if z_(1)=1-i and z_(2) = -2 + 4i then find Im((z_(1)z_(2))/barz_(1))

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

If |z_(1)| = sqrt(2), |z_(2)| = sqrt(3) and |z_(1) + z_(2)| = sqrt((5-2sqrt(3))) then arg ((z_(1))/(z_(2))) (not neccessarily principal)