Home
Class 12
MATHS
If I(m) = int0^pi ln(1-2m cos x + m^2)dx...

If `I(m) = int_0^pi ln(1-2m cos x + m^2)dx`, then I(1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Find I=int_0^pi ln(1+cosx)dx

Find I=int_0^pi ln(1+cosx)dx

If I(m)=int_(0)^(pi)log_(e)(1-2mcosx+m^(2))dx , Then find the value of I(81/9)

Find I=int_(0)^( pi)ln(1+cos x)dx

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

int_(0)^(2pi) ln (1+Cos x) dx=

Let I_(1)=int_(0)^(3 pi)(f(cos^(2)x)dxI_(2)=int_(0)^(2 pi)(f(cos^(2)x)dx and I_(3)=int_(0)^( pi)(f(cos^(2)x)dx, then (A)I_(1)+2P_(2)+3I_(2)=0(B)I_(1)=2I_(2)+I_(3)(C)I_(2)+I_(3)=I_(1)(D)I_(1)=2I_(3)