Home
Class 9
MATHS
Verify whether the following are zeroes ...

Verify whether the following are zeroes of the polynomial, indicated against them.(i) `p(x)=3x+1, x=-1/3` (ii) `p(x)=5x-pi, x=4/5` (iii) `p(x)=x^2-1, x=1,-1`(iv) `p(x)=(x+1)(x+2), x=-1,2` (v) `p(x)=x^2, x=0` (vi) `p(x)=l x+m, x=-m/l`

Text Solution

AI Generated Solution

To verify whether the given values are zeroes of the specified polynomials, we will substitute each value into the polynomial and check if the result is zero. ### Solution Steps: 1. **Part (i)**: Verify if \( x = -\frac{1}{3} \) is a zero of \( p(x) = 3x + 1 \). - Substitute \( x = -\frac{1}{3} \): \[ p\left(-\frac{1}{3}\right) = 3\left(-\frac{1}{3}\right) + 1 = -1 + 1 = 0 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Verify whether the following are zeroes of the polynomial, indicated against them . (i) p(x)=3x+1,x=-(1)/(3) (ii) p(x)=5x-pi,x=(4)/(5) (iii) p(x)=x^(2)-1,x=1,-1 (iv) p(x)=(x+1),(x-2),x=-1,2 (v) p(x)=x^(2),x=0 (vi) p(x)=lx+m,x=(-m)/(l) (vii) p(x)=3x^(2)-1,x=-(1)/(sqrt(3)),(2)/(sqrt(3)) (viii) p(x)=2x+1,x=(1)/(2)

Find the zeros of the polynomial x^(2)+x-p(p+1)

Find the zeros of the polynomial x^(2)+x-p(p+1)

Find the zero of the polynomial in each of the following eases: (i) p(x)=x+5 (ii) p(x)=x-5 (iii) p(x)=2x+5 (iv) p(x)=3x-2 (v) p(x)=3x (vi) p(x)=a x , a!=0 (vii) p(x)=c x+d , c!=0, c , d are real numbers.

Check whether x=-1 is a zero of the polynomial p(x)=x^(3)-3x+1

Find the zero of the polynomial in each of the followimg cases : (i) p(x)=x+5 (ii) p(x)=x-5 (iii) p(x)=2x+5 (iv) p(x)=3x-2 (v) p(x)=3x (vi) p(x)=ax, a ne 0 (vii) p(x)=cx+d, c ne 0, c,d are real numbers .

Find a zero of the polynomial : (i) p(x)=4x-3 (ii) p(x)=2x-2

Which of the following x values is a zero for the given polynomials? P(x)=2x+1,x=1/2

Find the zero of the polynomial : (i) p(x)=x-3 " " (ii) q(x)=3x-4 " " (iii) p(x)=4x-7 " " (iv) q(x)=px+q, p ne 0 (v)p(x)=4x " " (vi) p(x)=(3)/(2)x-1

Find p(0), p(1) and p(2) for each of the following polynomials : (i) p(y)=y^(2)-y+1 (ii) p(t)=2+t+2t^(2)-t^(3) (iii) p(x)=x^(3) (iv) p(x)=(x-1)(x+1)