Home
Class 12
MATHS
Given a cube ABCDA1 B1C1D1 with lower ...

Given a cube `ABCDA_1 B_1C_1D_1` with lower base `ABCD` and the upper base`A_1B_1C_1D_1` and the lateral edges `A A_1, BB_1,, C C_1, DD_1. M and M_1,` are the centres of the faces `ABCD, and A_1 B_1 C_1 D_1` respectively. O is a point on the line `MM_1.` Such that `overline(OA) + overline(OB) + overline(OC) + overline(OD) = overline(OM_1), . if overline(OM) = lambda overline(OM_1),` then `lambda` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Given a cube ABCD A_(1)B_(1)C_(1)D_(1) which lower base ABCD, upper base A_(1)B_(1)C_(1)D_(1) and the lateral edges "AA"_(1), "BB"_(1),"CC"_(1) and "DD"_(1) M and M_(1) are the centres of the forces ABCD and A_(1)B_(1)C_(1)D_(1) respectively. O is a point on the line MM_(2) such that bar(OA) + bar(OB), bar(OC) + bar(OD) = bar(OM) , then bar(OM)=lambda(OM_(1)) is equal to

[[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]]=

[[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

[[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overline(a)]]=

If the points A(overline(a)), B(overline(b)), C(overline(c)) are collinear and 2overline(a)+3overline(b)-5overline(c)=overline(0) , then

If the points A(overline(a)), B(overline(b)), C(overline(c)) are collinear and 3overline(a)+2overline(b)-5overline(c)=overline(0) , then

If the position vectors of points A, B, C and overline(a), overline(b), overline(c)" are "overline(c)=5overline(a)-4overline(b) , then