Home
Class 12
MATHS
If |vec a|=4,|vec b|=4 and |vec c|=5 suc...

If `|vec a|=4,|vec b|=4 and |vec c|=5` such that `vec a _|_ (vec b + vec c) vec b _|_ (vec c+ vec a) and vec c _|_ (vec a + vec b),` then `|vec a + vec b + vec c|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a, vec b, vec c are three vectors such that vec a . (vec b + vec c) + vec b . (vec c + vec a) + vec c . (vec a + vec b) = 0 and |vec a| = 1, |vec b | = 4, |vec c| = 8 , then |vec a + vec b + vec c| =

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

[vec a + vec b vec b + vec c vec c + vec a] =

If |vec a| = 3, |vec b| = 5, and |vec c| = 4 and vec a + vec b + vec c = vec O then the value of (vec a . vec b + vec b . vec c + vec c .vec a ) =

If | vec a | = 5, | vec b | = 4 and | vec c | = 3 thus what will be the value of | vec a * vec b + vec b * vec c + vec c * vec a | given vec a + vec b + vec c = 0

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

The value of [vec a - vec b, vec b - vec c , vec c - vec a] where |vec a| = 1, |vec b| =5, |vec c| =3 is

Non-zero vectors vec a, vec b and vec c satisfy vec a * vec b = 0, (vec b-vec a) (vec b + vec c) = 0 and 2 | vec b + vec c | = | vec b -vec a | If vec a = muvec b + 4vec c then possible value of mu are

If vec a, vec b , and vec c are vectors such that |vec b| = |vec c| , then {[(vec a + vec b) xx (vec a + vec c)] xx (vec b xx vec c)} . (vec b + vec c) =