Home
Class 11
MATHS
Let f:(2,4)->(1,3) where f(x) = x-[x/2] ...

Let `f:(2,4)->(1,3)` where `f(x) = x-[x/2]` (where [.] denotes the greatest integer function).Then `f^-1 (x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(2,4)rarr(1,3) where f(x)=x-[(x)/(2)] (where [.1. denotes the greatest integer function).Then f^(-1)(x) is

Let f: (2,4) rarr (1,3) where f(x) = x - [x//2] (where [ .] denotes the greatest integer function), then f^(-1)(x) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then