Home
Class 11
MATHS
Solve sqrt(x^2+4x-21)+sqrt(x^2-x-6)=sqrt...

Solve `sqrt(x^2+4x-21)+sqrt(x^2-x-6)=sqrt(6x^2-5x-39.)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve :sqrt(2x-6)+sqrt(x+4)=5

Solve sqrt(x-2)+sqrt(4-x)=2

sqrt(x^(2)-4)-(x-2)=sqrt(x^(2)-5x+6)

Solve sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1

Solve for x:sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4)

(6) sqrt(5)x^(2)-2sqrt(2)x-2sqrt(5)=0

Solve for x: sqrt(11x-6)+sqrt(x-1)=sqrt(4x+5)

The number of real solutions of sqrt(x^(2)-4x+3)+sqrt(x^(2)-9)=sqrt(4x^(2)-14x+6)

If sqrt(x-2)+sqrt(4-x)=sqrt(6-x) Find x

Solve : sqrt(9+2x)-sqrt(2x)=(5)/(sqrt(9+2x)) .