Home
Class 12
MATHS
[" If "f" is differentiable at "a(1)],[l...

[" If "f" is differentiable at "a_(1)],[lim_(x rarr a)(xf(a)-af(x))/(x-a)=...]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarra)(xf(a)-af(x))/(x-a)=f(a)-(a)f'(a) .

Write the value of (lim)_(x rarr a)(xf(a)-af(x))/(x-a)

If f(x) is differentiable at x=a, find lim_(x rarr a)(x^(2)f(a)-a^(2)f(x))/(x-a)

If f is differentiable at x=1, then lim_(x rarr 1) (x^(2) f(1)-f(x))/(x-1) is

(d)/(dx)[lim_(x rarr a)(x^(5)-a^(5))/(x-a)]=

If f(x) is differentiable at x=a, find (lim)_(x rarr a)(x^(2)f(a)-a^(2)f(x))/(x-a)

If f is differentiable at x=1, Then lim_(x to1)(x^2f(1)-f(x))/(x-1) is

If f is differentiable at x=1, Then lim_(x to1)(x^2f(1)-f(x))/(x-1) is

If f is derivable at x =a,then lim_(xto a )( (xf(a) -af( x))/(x-a) )