Home
Class 12
MATHS
(x^(5))/(sqrt(1+x^(3)))...

(x^(5))/(sqrt(1+x^(3)))

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int(x^(5)dx)/(sqrt(1+x^(3)))

int(x^(5)dx)/(sqrt((1+x^(3))))=...

If (sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))=3 then x=1)sqrt((2)/(3)2)sqrt((1)/(3))3)sqrt((2)/(5))sqrt((3)/(5))

In the expansion of (x+sqrt(x^(3)-1))^(5)+(x-sqrt(x^(3)-1))^(5) the sum of coefficients of all terms having odd exponent is ……….

The sum of the coefficients of all odd degree terms in the expansion of (x+sqrt(x^(3)-1))^(5)+(x-sqrt(x^(3)-1))^(5), (xgt1) is :

Rationalise the denominator: (a) (1)/(root(3)(3) + root(3)(2)) , (b) (2)/(sqrt5 + sqrt3 + sqrt2) , (c) (x^(2))/(sqrt(x^(2) + y^(2)) - y) , (d) (1)/(sqrt6 + sqrt5 - sqrt11) (e) (sqrt(x + 2y) - sqrt(x -2y))/(sqrt(x + 2y) + sqrt(x - 2y)) , (f) (sqrt10 + sqrt5 - sqrt3)/(sqrt10 - sqrt5 + sqrt3)