Home
Class 11
MATHS
" Show that arg "bar(z)=2 pi-arg z" for ...

" Show that arg "bar(z)=2 pi-arg z" for non-real "z

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that arg. overline(z)=2pi-arg.z.

arg(bar(z))=-arg(z)

Let z, omega be complex numbers such that bar(z)+ibar(omega)=0" and "arg z omega= pi . Then arg z equals

If z_(1) , z_(2) are complex numbers and if |z_(1) + z_(2)| = |z_(1)| - |z_(2)| show that arg (z_(1)) - arg (z_(2)) = pi .

If arg (bar(z)_(1))= "arg" (z_(2)), (z ne 0) then

if z_1=1+isqrt3 , z_2=sqrt3-i show that (a)arg (z_1z_2)=arg(z_1)+arg(z_2) and (b) arg(z_1//z_2)=arg(z_1)-arg(z_2)

If z is purely imaginary and Im (z) lt 0 , then arg(i bar(z)) + arg(z) is equal to

If arg (bar (z) _ (1)) = arg (z_ (2)) then