Home
Class 11
MATHS
If a ,b ,c are non-zero real numbers, t...

If `a ,b ,c` are non-zero real numbers, then the minimum value of the expression `(((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2))` is not divisible by prime number.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

If a, b, c are non-zero than minimumm value of expression (((a^(4)+3a^(2)+1)(b^(4)+5b^(2)+1)(c^(4)+7c^(2)+1))/(a^(2)b^(2)c^(2))) equals pqr find p + q+ r .

The minimum value of the quantity ((a^(2)+3a+1)(b^(2)+4b+1)(c^(2)+5c+1))/(abc)

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c are non-zero real numbers and a+b+c=0, then the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab) is (A)0(B)2(D)4(C)3

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)