Home
Class 11
MATHS
If z=costheta+isintheta is a root of the...

If `z=costheta+isintheta` is a root of the equation `a_0z^n+a_2z^(n-2)++a_(n-1)z^+a_n=0,` then prove that `a_0+a_1costheta+a_2^cos2theta++a_ncosntheta=0` `a_1"sin"theta+a_2^sin2theta++a_nsinntheta=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

z0is a root of the equation z^(n)cos[theta o]+z^(n-1)cos[theta1]+z^(n-2)cos theta[theta2]+......+z^(n)cos[theta[n-1]]+cos theta[n]=2 where Theta[i]in R

The distance of the roots of the equation tan theta_(0) z^(n) + tan theta_(1) z^(n-1) + …+ tan theta_(n) = 3 from z=0 , where theta_(0) , theta_(1) , theta_(2),…, theta_(n) in [0, (pi)/(4)] satisfy

If cos2theta=0 , then |(0,costheta,sin theta),(cos theta, sin theta, 0),(sin theta, 0, cos theta)|^(2) is equal to…………

If z=cos theta+i sin theta, then the value of (z^(2n)-1)/(z^(2n)+1)(A)i tan n theta(B)tan n theta(C)i cot n theta(D)-i tan n theta

If tan\ theta/2=cosectheta-sintheta, then- a. sin^2\ theta/2=2sin^2\ 18^@ b. cos2theta+2costheta+1=0 c. sin\ theta/2=4sin^2\ 18^@ d. cos2theta+2costheta-1=0

zo is one of the roots of the equation z^(n)cos theta0+z^(n-1)cos theta2+......+z cos theta(n-1)+cos theta(n)=2, where theta in R, then (A)|z0| (1)/(2)(C)|z0|=(1)/(2)