Home
Class 11
MATHS
y'=e^(x)log(sin2x)...

y'=e^(x)log(sin2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x) log (sin 2x), find (dy)/(dx) .

e^x.log (sin 2 x)

Differentiate e^(x)log sin2x with respect to x:

Solve the following differential equations: (dy)/(dx)=(e^(x)(2x+sin2x))/(y(2log y+1))

The solution of (dy)/(dx)=e^(x)(sin^(2)x+sin2x)/(y(2log y+1)) is

If y=e^(3x) sin ^(2)x log x ,then (dy)/(dx)=

If x=e^(log(cos4theta)),y=e^(log(sin4theta)),"then "(dy)/(dx)" is "

int(e^(cotx))/(sin^(2)x)("2 ln cosec x"+sin2x)dx