Home
Class 12
MATHS
If y=f(a^x)a n df^(prime)(sinx)=(log)e x...

If `y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e nfin d(dy)/(dx),` if it exists, where `pi/2

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e n find (dy)/(dx), if it exists, where pi//2

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,then f i n d ((dy)/(dx)), if it exists, where pi/2 less than x less than pi

If y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,then f i n d ((dy)/(dx)), if it exists, where pi/2 less than x less than pi

If y=f(a^(x)) and f'(sin x)=log_(e)x, then find (dy)/(dx) if it exists,where (pi)/(2)

If f^(prime)(1)=2 and y=f((log)_e x) , find (dy)/(dx) at x=e .

If y=e^(log_(e)x)," then "(dy)/(dx)=

If x y+y^2=tanx+y ,t h e nfin d(dy)/(dx)dot

If f(x) =log_(e) (x^(2)-4) then find (df) /(dx)

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=e^x log x then (dy)/(dx) is