Home
Class 12
MATHS
If Pn is the sum of a GdotPdot upto n te...

If `P_n` is the sum of a `GdotPdot` upto `n` terms `(ngeq3),` then prove that `(1-r)(d P_n)/(d r)=(1-n)P_n+n P_(n-1),` where `r` is the common ratio of `GdotPdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If P_(n) is the sum of a G.P. upto n terms (n>=3), then prove that (1-r)(dP_(n))/(dr)=(1-n)P_(n)+nP_(n-1), where r is the common ratio of G.P.

Prove that: ""^(n+1)P_(r+1)=(n+1)* ""^nP_r .

Prove that .^(n)P_(r)=.^(n-1)P_(r)+r.^(n-1)P_(r-1) .

Prove that P(n,r) = (n- r+1) P(n,r-1)

11. Prove that nP_(r)=n(n-1)P_(r-1)

Prove that .^(n-1)P_(r)+r.^(n-1)P_(r-1)=.^(n)P_(r)

Prove that .^(n-1)P_r+r.^(n-1)P_(r-1)=^nP_r .

Prove that .^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

If S_(n) is the sum of a G.P. to n terms of which r is the common ratio, then : (r-1)*(d)/(dr)(S_(n))+nS_(n-1)=

Prove that: ""^(n-1)P_r=(n-r)* ""^(n-1)P_(r-1)