Home
Class 12
MATHS
" If "f(x)=(x)/(sin x)" and "g(x)=(x)/(t...

" If "f(x)=(x)/(sin x)" and "g(x)=(x)/(tan x)," where "0

Promotional Banner

Similar Questions

Explore conceptually related problems

If quad f(x)=(x)/(sin x) and g(x)=(x)/(tan x), where0

Discuss monotonocity of f(x)=(x)/(sin x) and g(x)=(x)/(tan x), where

If f(x)=x/(sinx) and g(x)=x/("tan"x) , where 0ltxle1 , then in this interval

Let F(x) = f(x) +g(x) , G(x) = f(x) - g( x) and H(x) =(f( x))/( g(x)) where f(x) = 1- 2 sin ^(2) x and g(x) =cos (2x) AA f: R to [-1,1] and g, R to [-1,1] Now answer the following If the solution of F(x) -G (x) =0 are x_1,x_2, x_3 --------- x_n Where x in [0,5 pi] then

Let f(x+y)=f(x)f(y) and f(x)=1+(sin2x)g(x) , where g(x) is continuous. Then f'(x) is equal to :

If f(x)=sin(tan x),g(x)=tan(sin x), then

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)=ln(sin x) and g(x)=sin^(-1)(e^(-x)) for all x in(0,pi) and f(g(alpha))=b and (f(g(x))' at x=alpha is a then which is true.