Home
Class 12
MATHS
Let A denote the matrix ({:(0,i),(i,0):...

Let A denote the matrix `({:(0,i),(i,0):})`, where ` i^(2) = -1` , and let `I` denote the identity matrix `({:(1,0),(0,1):})`. Then `I + A + A^(2) + "….." + A^(2010)` is -

A

`({:(0,0),(0,0):})`

B

`({:(0,i),(i,0):})`

C

`({:(1,i),(i,1):})`

D

`({:(-1,0),(0,-1):})`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( I + A + A^2 + \ldots + A^{2010} \) where \( A = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \) and \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \] Calculating the product: - First row, first column: \( 0 \cdot 0 + i \cdot i = 0 + i^2 = -1 \) - First row, second column: \( 0 \cdot i + i \cdot 0 = 0 + 0 = 0 \) - Second row, first column: \( i \cdot 0 + 0 \cdot i = 0 + 0 = 0 \) - Second row, second column: \( i \cdot i + 0 \cdot 0 = i^2 + 0 = -1 \) Thus, \[ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = (-I) \cdot A = -A = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \] ### Step 3: Calculate \( A^4 \) Now, we calculate \( A^4 \): \[ A^4 = A^2 \cdot A^2 = (-I) \cdot (-I) = I \] ### Step 4: Identify the pattern We observe that: - \( A^0 = I \) - \( A^1 = A \) - \( A^2 = -I \) - \( A^3 = -A \) - \( A^4 = I \) This pattern repeats every 4 terms: - \( A^{4k} = I \) - \( A^{4k+1} = A \) - \( A^{4k+2} = -I \) - \( A^{4k+3} = -A \) ### Step 5: Sum the series We need to sum \( I + A + A^2 + A^3 + A^4 + \ldots + A^{2010} \). Since the powers of \( A \) repeat every 4 terms, we can group the terms: \[ (I + A + (-I) + (-A)) = 0 \] This means every complete set of 4 terms sums to 0. ### Step 6: Count the complete sets To find how many complete sets of 4 fit into 2011 terms (from \( A^0 \) to \( A^{2010} \)): \[ \text{Number of complete sets} = \left\lfloor \frac{2011}{4} \right\rfloor = 502 \] This accounts for \( 502 \times 4 = 2008 \) terms. ### Step 7: Remaining terms The remaining terms are: - \( A^{2009} = A \) - \( A^{2010} = A^2 = -I \) ### Step 8: Final sum Thus, the total sum becomes: \[ \text{Total sum} = 502 \cdot 0 + A + (-I) = A - I \] Substituting the values: \[ A - I = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & i \\ i & -1 \end{pmatrix} \] ### Final Answer The final result is: \[ \begin{pmatrix} -1 & i \\ i & -1 \end{pmatrix} \]

To solve the problem, we need to evaluate the expression \( I + A + A^2 + \ldots + A^{2010} \) where \( A = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \) and \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \] Calculating the product: ...
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-I MATHEMATICS|15 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-2 MATHEMATICS|5 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

The matrix [{:(0,-4+i),(4+I,0):}] is

the matrix A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1, is

The matrix [{:(" "0,-4+i),(4+I," "0):}] is

Let A=[(0, i),(i, 0)] , where i^(2)=-1 . Let I denotes the identity matrix of order 2, then I+A+A^(2)+A^(3)+……..A^(110) is equal to

Let A = [(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity matrix . Then 2A^(2) -A^(3) =

If A^(2) - A + I = 0 , then the inverse of the matrix A is

Let A be a square matrix of order 3 whose all entries are 1 and let I_(3) be the indentiy matrix of order 3. then the matrix A - 3I_(3) is

If A=[[1,0,-32,1,30,1,1]], then verify that A^(2)+A=A(A+I), where I is the identity matrix.

(C) equal to In1f for a matrix A, A? +| =0 where I is the identity matrix, then A equale1 0(A) o 1© @ :?-1 01(C)1 1c1 27[o -1

KVPY PREVIOUS YEAR-KVPY-exercise
  1. Let A denote the matrix ({:(0,i),(i,0):}), where i^(2) = -1 , and l...

    Text Solution

    |

  2. The number of ordered pairs of integers(x,y) which satisfy x^3 + y^3 =...

    Text Solution

    |

  3. A,B,E are 3 points of the circumference of a circle of radius 1. If an...

    Text Solution

    |

  4. [x^2] = x + 1 how many real roots

    Text Solution

    |

  5. If x + y = 1 where x and y are positive numbers, then the minimum valu...

    Text Solution

    |

  6. If all the natural numbers from 1 to 2021 are written as 12345.....202...

    Text Solution

    |

  7. [(2^(2020)+1)/(2^(2018)+1)] + [(3^(2020)+1)/(3^(2018)+1)] + [(4^(2020)...

    Text Solution

    |

  8. Let's say abcde is a 5 digit number which when multiplied by 9 new num...

    Text Solution

    |

  9. I: m is any composite number that divides (m-1)! II: n is a natural ...

    Text Solution

    |

  10. 2^x + 3^y = 5^(xy) Number of solutions = ?

    Text Solution

    |

  11. In a book self if m books have black cover and n books have blue cover...

    Text Solution

    |

  12. xgt2ygt0 and 2log(x-2y)=log xy Possible values of x/y is/are

    Text Solution

    |

  13. In an equiangular octagon if 6 consecutive sides are 6,8,7,10,9,5 then...

    Text Solution

    |

  14. If the function f(x) = 2+x^2-e^x and g(x) = f^(-1)(x), then the value ...

    Text Solution

    |

  15. S= lim(nrarroo) sum(k=0)^n 1/sqrt(n^2 + k ^2)

    Text Solution

    |

  16. f(x): R to R |f(x)-f(y)| > |x-y| forall x,y in R check one-one/man...

    Text Solution

    |

  17. x^3 - [x]^3 = (x - [x])^3

    Text Solution

    |

  18. S1:lim(n->oo) (2^n + (-2)^n)/2^n does not exist S2:lim(n->oo) (3^n +...

    Text Solution

    |

  19. In a 15 sidead polygon a diagnol is chosen at random. Find the probabi...

    Text Solution

    |