Home
Class 12
MATHS
The number of natural numbers n in the ...

The number of natural numbers n in the interval `[1005, 2010]` for which the polynomial `1+x+x^(2) + x^(3) + "….."x^(n-1)` divides the polynomial `1 + x^(2) + x^(4) + x^(6) + "……"x^(2010)` is -

A

`0`

B

`100`

C

`503`

D

`1006`

Text Solution

Verified by Experts

The correct Answer is:
C

`1 + x^(2) + x^(4)"....."x^(210) = (1(1-x^(210)))/(1-x^(2)) = ((1-x^(1006))(1+x^(1006)))/((1-x)(1+x))`
`= (1+x^(1006))(((1-x^(503)))/((1-x)))(((1+x^(503)))/((1+x)))`
`=(1+x^(1006))(1+x+x^(2)+"...."x^(502))(1-x+x^(2)-x^(3)+"....."x^(502))`
that is divisible by `1+ x + x^(2) + "...."x^(n-1)`
If ` n - 1 = 502`
`n = 503`
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-I MATHEMATICS|15 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-2 MATHEMATICS|5 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

Divide: the polynomial 2x^(4)+8x^(3)+7x^(2)+4x+3 by x+3

Divide the polynomial 3x^(4)-4x^(3)-3x-1 by x-2

Divide the polynomial 3x^(4)-4x^(3)-3x-1 by x-1

Divide the polynomial 3x^(4)-4x^(3)-3x-1 by quad x-1

The degree of the polynomial (x+1)(x^(2)-x-x^(4)+1) is:

Divide the polynomial 6x^(4) - 44x^(2) + 6x - 3 by the polynomial x^(2) - 3x + 1 and verify the division algorithm.

Separate the intervals in which the polynomial 2x^(3) -15x^(2) + 36x+1 increasing or decreasing.

The remainder when the polynomial 1+x^(2)+x^(4)+x^(6)+......+x^(22) is divided by 1+x+x^(2)+x^(2)+.....+x^(11) is

KVPY PREVIOUS YEAR-KVPY-exercise
  1. The number of natural numbers n in the interval [1005, 2010] for whi...

    Text Solution

    |

  2. The number of ordered pairs of integers(x,y) which satisfy x^3 + y^3 =...

    Text Solution

    |

  3. A,B,E are 3 points of the circumference of a circle of radius 1. If an...

    Text Solution

    |

  4. [x^2] = x + 1 how many real roots

    Text Solution

    |

  5. If x + y = 1 where x and y are positive numbers, then the minimum valu...

    Text Solution

    |

  6. If all the natural numbers from 1 to 2021 are written as 12345.....202...

    Text Solution

    |

  7. [(2^(2020)+1)/(2^(2018)+1)] + [(3^(2020)+1)/(3^(2018)+1)] + [(4^(2020)...

    Text Solution

    |

  8. Let's say abcde is a 5 digit number which when multiplied by 9 new num...

    Text Solution

    |

  9. I: m is any composite number that divides (m-1)! II: n is a natural ...

    Text Solution

    |

  10. 2^x + 3^y = 5^(xy) Number of solutions = ?

    Text Solution

    |

  11. In a book self if m books have black cover and n books have blue cover...

    Text Solution

    |

  12. xgt2ygt0 and 2log(x-2y)=log xy Possible values of x/y is/are

    Text Solution

    |

  13. In an equiangular octagon if 6 consecutive sides are 6,8,7,10,9,5 then...

    Text Solution

    |

  14. If the function f(x) = 2+x^2-e^x and g(x) = f^(-1)(x), then the value ...

    Text Solution

    |

  15. S= lim(nrarroo) sum(k=0)^n 1/sqrt(n^2 + k ^2)

    Text Solution

    |

  16. f(x): R to R |f(x)-f(y)| > |x-y| forall x,y in R check one-one/man...

    Text Solution

    |

  17. x^3 - [x]^3 = (x - [x])^3

    Text Solution

    |

  18. S1:lim(n->oo) (2^n + (-2)^n)/2^n does not exist S2:lim(n->oo) (3^n +...

    Text Solution

    |

  19. In a 15 sidead polygon a diagnol is chosen at random. Find the probabi...

    Text Solution

    |