Home
Class 12
MATHS
Let a(0) = 0 and a(n) = 3a(n-1) + 1 for...

Let `a_(0) = 0` and ` a_(n) = 3a_(n-1) + 1` for `n ge 1`. Then the remainder obtained dividing `a_(2010)` by 11 is -

A

0

B

7

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

`a_(n) = 3a_(n-1) +1`
`a_(2010) = 3a_(2009) + 1`
`= 3(3a_(2008)+1) + 1 = 3^(2)a_(2008) + 3 + 1`
`{:(3^(3)a_(2007),+3+3+1),(.,),(.,),(.,),(.,):}`
`3^(2010)a_(0) + ubrace((3+3+"....."3))_("2009 times")+1`
` = 0 + 6027 + 1 = 6028`
Remainder `((6028)/(11)) = 0`
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-I MATHEMATICS|15 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-2 MATHEMATICS|5 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

Let sequence by defined by a_(1)=3,a_(n)=3a_(n-1)+1 for all n>1

Let alpha and beta be the roots of x^(2)-5x+3=0 with alpha gt beta . If a_(n) = a^(n)-beta^(n) for n ge1 , then the value of (3a_(6)+a_(8))/(a_(7)) is :

Write the first five terms of the following sequences and obtain the corresponding series (i) a_(1) = 7 , a_(n) = 2a_(n-1) + 3 "for n" gt 1 (ii) a_(1) = 2, a_(n) = (a_(n-1))/(n+1) "for n" ge 2

If a_(1)=1, a_(2)=5 and a_(n+2)=5a^(n+1)-6a_(n), n ge 1 . Show by using mathematical induction that a_(n)=3^(n)-2^(n)

If a_(n+1)=(1)/(1-a_(n))" for " n ge 1 and a_(3)=a_(1)," then "(a_(2022))^(2022) equals

If a_(0)=1,a_(n)=2a_(n-1) if n is odd,a_(n)=a_(n-1) if n is even,then value of (a_(19))/(a_(9)) is

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

Concept : Let a_(0)x^(n)+a_(1)x^(n-1)+…+a_(n-1)x+a_(n)=0 be the nth degree equation with a_(0),a_(1),…a_(n) integers. If p/q is a rational root of this equation, then p is a divisor of a_(n) and q is a divisor of a_(0) . If a_(0)=1 , then every rational root of this equation must be an integer. The roots of the equation x^(3)-9x^(2)+23x-15=0 , if integers, are in

KVPY PREVIOUS YEAR-KVPY-exercise
  1. Let a(0) = 0 and a(n) = 3a(n-1) + 1 for n ge 1. Then the remainder ob...

    Text Solution

    |

  2. The number of ordered pairs of integers(x,y) which satisfy x^3 + y^3 =...

    Text Solution

    |

  3. A,B,E are 3 points of the circumference of a circle of radius 1. If an...

    Text Solution

    |

  4. [x^2] = x + 1 how many real roots

    Text Solution

    |

  5. If x + y = 1 where x and y are positive numbers, then the minimum valu...

    Text Solution

    |

  6. If all the natural numbers from 1 to 2021 are written as 12345.....202...

    Text Solution

    |

  7. [(2^(2020)+1)/(2^(2018)+1)] + [(3^(2020)+1)/(3^(2018)+1)] + [(4^(2020)...

    Text Solution

    |

  8. Let's say abcde is a 5 digit number which when multiplied by 9 new num...

    Text Solution

    |

  9. I: m is any composite number that divides (m-1)! II: n is a natural ...

    Text Solution

    |

  10. 2^x + 3^y = 5^(xy) Number of solutions = ?

    Text Solution

    |

  11. In a book self if m books have black cover and n books have blue cover...

    Text Solution

    |

  12. xgt2ygt0 and 2log(x-2y)=log xy Possible values of x/y is/are

    Text Solution

    |

  13. In an equiangular octagon if 6 consecutive sides are 6,8,7,10,9,5 then...

    Text Solution

    |

  14. If the function f(x) = 2+x^2-e^x and g(x) = f^(-1)(x), then the value ...

    Text Solution

    |

  15. S= lim(nrarroo) sum(k=0)^n 1/sqrt(n^2 + k ^2)

    Text Solution

    |

  16. f(x): R to R |f(x)-f(y)| > |x-y| forall x,y in R check one-one/man...

    Text Solution

    |

  17. x^3 - [x]^3 = (x - [x])^3

    Text Solution

    |

  18. S1:lim(n->oo) (2^n + (-2)^n)/2^n does not exist S2:lim(n->oo) (3^n +...

    Text Solution

    |

  19. In a 15 sidead polygon a diagnol is chosen at random. Find the probabi...

    Text Solution

    |