Home
Class 12
MATHS
Suppose, a, b, c are three distinct real...

Suppose, a, b, c are three distinct real numbers. Let P (x) =`((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b))`.
When simplified, P (x) becomes

A

1

B

x

C

`(x^(2)+(a+b+c)(ab+bc+ca))/((a-b)(b-c)(c-a))`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A

`P(x)=((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b))`
`"Let "P(a)=1+0+0=1`
`P(b) =0+1+0=1`
`P (c) =0+0+1=1`
`:. P(x)=1 " for all "x in R`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+ (c (x-a) (x-b))/((c-a)(c-b))= x is satisfied by

Solution of equation ((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b))=1 is/are.

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .

x^((a+b-c)/((a-c)(b-c))),x^((b+c-a)/((b-a)(c-a))),x^((c+a-b)/((c-b)(a-b)))=

Show that ((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1 is an identity.

Suppose a,b,care three non-zero real numbers.The equation x^(2)+(a+b+c)x+(a^(2)+b^(2)+c^(2))=0

(_x^( If )-b-c)/(a)+(x-c-a)/(b)+(x-a-c)/(c)=3

(x^(3))/((x-a)(x-b)(x-c))=1+(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=