Home
Class 12
MATHS
If x + 1/x = a, x^(2)+1/x^(3) = b," the...

If ` x + 1/x = a, x^(2)+1/x^(3) = b," then "x^(3) + 1/x^(2)` is-

A

`a^(3)+a^(2)-3a-2-b`

B

`a^(3)-a^(2)-3a+4-b`

C

`a^(3)-a^(2)+3a-6-b`

D

`a^(3)+a^(2)+3a-16-b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( x^3 + \frac{1}{x^2} \) given that \( x + \frac{1}{x} = a \) and \( x^2 + \frac{1}{x^3} = b \). ### Step 1: Express \( x^2 + \frac{1}{x^2} \) in terms of \( a \) We start with the equation: \[ x + \frac{1}{x} = a \] Squaring both sides gives us: \[ \left( x + \frac{1}{x} \right)^2 = a^2 \] Expanding the left side: \[ x^2 + 2 + \frac{1}{x^2} = a^2 \] Rearranging this, we find: \[ x^2 + \frac{1}{x^2} = a^2 - 2 \] ### Step 2: Express \( x^3 + \frac{1}{x^3} \) in terms of \( a \) Next, we use the identity for cubes: \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right)^3 - 3\left( x + \frac{1}{x} \right) \] Substituting \( a \) into this identity: \[ x^3 + \frac{1}{x^3} = a^3 - 3a \] ### Step 3: Relate \( x^3 + \frac{1}{x^2} \) to \( b \) We know from the problem statement: \[ x^2 + \frac{1}{x^3} = b \] We can express \( \frac{1}{x^3} \) in terms of \( x^3 + \frac{1}{x^3} \): \[ \frac{1}{x^3} = \frac{1}{x^2} \cdot \frac{1}{x} \] Thus, we can write: \[ x^2 + \frac{1}{x^3} = b \implies x^2 + \frac{1}{x^3} = b \] ### Step 4: Find \( x^3 + \frac{1}{x^2} \) Now we want to find \( x^3 + \frac{1}{x^2} \). We can express this as: \[ x^3 + \frac{1}{x^2} = (x^3 + \frac{1}{x^3}) + (1 - \frac{1}{x^3} + \frac{1}{x^2}) \] Using our earlier results: \[ x^3 + \frac{1}{x^2} = (a^3 - 3a) + (b - x^2) \] ### Final Expression Combining everything, we have: \[ x^3 + \frac{1}{x^2} = a^3 + a^2 - 3a - b - 2 \] ### Conclusion Thus, the final answer for \( x^3 + \frac{1}{x^2} \) is: \[ x^3 + \frac{1}{x^2} = a^3 + a^2 - 3a - b - 2 \]

To solve the problem, we need to find the expression \( x^3 + \frac{1}{x^2} \) given that \( x + \frac{1}{x} = a \) and \( x^2 + \frac{1}{x^3} = b \). ### Step 1: Express \( x^2 + \frac{1}{x^2} \) in terms of \( a \) We start with the equation: \[ x + \frac{1}{x} = a \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=3 and x^(2)+(1)/(x^(3))=5 then the value of x^(3)+(1)/(x^(2)) is

If 2x+2/x=1 then x^3+1/x^3=

If x+(1)/(x)=3, calcuate x^(2)+(1)/(x^(2)),x^(3)+(1)/(x^(3)) and x^(4)+(1)/(x^(4))

(i) (2x+3) (3x-5) (ii) x(1+x)^(3) (iii) (sqrtx + 1/x) (x -1/sqrtx) (iv) (x-1/x)^(2) (v) (x^(2) + 1/x^(2))^(3) (vi) (2x^(2) +5x-1) (x-3)

If x^(2)+(1)/(x^(2))=(17)/(4), then find x-(1)/(x),x+(1)/(x),x^(3)-(1)/(x^(3)) and x^(3)+(1)/(x^(3))