Home
Class 12
MATHS
Let f(x)-cos5x+Acos4x+Bcos3x+Ccos2x+Dco...

Let `f(x)-cos5x+Acos4x+Bcos3x+Ccos2x+Dcosx E and T-f(0)-f(pi/5)+f((2pi)/5)-f((3pi)/5)+.........+f((8pi)/5)-f((9pi)/5)` then T

A

depends on A, B, C, D, E

B

depends on A, C, E but independent of B and D

C

depends on B, D but independent of A, C, E

D

is independent of A, B, C, D, E

Text Solution

Verified by Experts

The correct Answer is:
C

Clearly `f(pi+x)+f(pi-x)` (every term contain cosine)
`f(pi/5)=f((9pi)/5), f((2pi)/5)=f((8pi)/5), f((3pi)/5)=f((7 pi)/5)`
`f((4pi)/5)=f((6pi)/5)`
`T=f(0)-2[f(pi/5)+f((3pi)/5)]+2[f((2pi)/5)+f((4pi)/5)]-f(pi)`
`f(0)-f(pi)=2(1+B+D)`
`f(pi/5)+f((3pi)/5)=f(pi/5)-f((4pi)/5)=2 (1+B" cos"(3pi)/5+D " cos"pi/5)`
`f((2pi)/5)+f((4pi)/5)=f((2pi)/5)-f((3pi)/5)=2(1+B" cos"(6pi)/5+D" cos" (2pi)/5)`
`T rArr` contains only B, D terms
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)-cos5x+A cos4x+B cos3x+C cos2x+D cos xE and T-f(0)-f((pi)/(5))+f((3 pi)/(5))+......+f((8 pi)/(5))-f((9)/(4) then T

If f'(x)=a sin x+b cos x and f'(0)=4,f(0)=3,f((pi)/(2))=5f(x)

If f(x)=|cos x|, find f'((pi)/(4)) and f'((3 pi)/(4))

If f(x)=|cos x|, find f'((pi)/(4)) and f'((3 pi)/(4))

If f'(x)=a sin x+b cos x and f'(0)=4,f(0)=3,f((pi)/(2))=5, find f(x)

let f(x)=e^(cos-1)sin(x+(pi)/(3)) then f((8 pi)/(9)) and f((-7 pi)/(4))

(2)/(x-f((pi)/(12)))+(3)/(x-f((pi)/(4)))+(4)/(x-f((5 pi)/(12)))=0

Find the rang of f(x)=log_sqrt5(3+cos((3pi)/4+x)+cos((pi)/4+x)+cos((pi)/4-x)-cos((3pi)/4-x))

Off(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a)f(x)+f(pi) (b) f(x)+2(pi) (c)f(x)+f(pi/2) (d) f(x)+2f(pi/2)