Home
Class 12
MATHS
In triangle ABC, we are given that 3 sin...

In triangle ABC, we are given that `3 sin A +4 cos B=6` and `4 sin B+3 cos A=1`. Then the measure of the angle C is -

A

`30^(@)`

B

`150^(@)`

C

`60^(@)`

D

`75^(@)`

Text Solution

Verified by Experts

The correct Answer is:
A

Square & add both equations
`9+16+24 sin (A+B)=37`
`sin (A+B)=1/2 rArr A+B=pi/6 rArr C=(5pi)/6` (wrong)
`rArr A+B=(5pi)/6 rArr C=pi/6`
because `C=(5pi)/6`
does not follow equation `3 sin A + 4 cos B =6`
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC,3sin A+4cos B=6 and 4sin B+3cos A=1 hold.Then the angle C equals (measured in degree)

In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

in a Delta ABC,3sin A+4cos B=6 and 3cos A+4sin B=1 then angle C is

If in a triangle ABC,4sin A = 4 sin B=3 sin C, then cos C=

In any Delta ABC, prove that :a cos A+b cos B+c cos C=2a sin B sin C

In a Delta PQR. if 3sin P+4cos Q=6 and 4sin Q+3cos P=1, then the angle R is equal to:

In a !ABC if sin A cos B = 1/4 and 3 tan A = B , then the triangle is

In a Delta ABC, if sin A-cos B=cos C, then the measure of /_B is