Home
Class 12
MATHS
If f(x)=(2011 + x)^(n), where x is a rea...

If `f(x)=(2011 + x)^(n)`, where x is a real variable and n is a positive interger, then value of `f(0)+f'(0)+ (f'' (0))/(2!)+...+ (f^((n-1))(0))/((n-1)!)` is `-f(0)+f'(0)+ (f'' (0))/(2!)+...+ (f^((n-1))(0))/((n-1)!)` is -

A

`(2011)^(n)`

B

`(2012)^(n)`

C

`(2012)^(n)-1`

D

`n(2011)^(n)`

Text Solution

Verified by Experts

The correct Answer is:
C

`(2011)^(n)+.^(n)C_(1)(2011)^(n-1)+ .^(n)C_(2)(2011)^(n-1)+...+.^(n)C_(n-1)2011+.^(n)C_(n-1)`
`=(2011+1)^(n)-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1-x)^(n) , then the value of f(0)+f'(0)+(f''(0))/(2!)+...+(f^(n)(0))/(n!) , is

if f(x)=(a-x^(n))^((1)/(n)), where a>0 and n is a positive integer,then f(f(x))=(i)x^(3)( ii) x^(2)( iii) x( iv )-x

If f(x)=(1+x)^(n), then the value of f(0)+f'(0)+(f^(n)(0))/(2!)+(f'''(0))/(3!)+......(f^(n)(0))/(n!)

If f(x)=(p-x^(n))^((1)/(n)),p>0 and n is a positive integer then f[f(x)] is equal to

If f(x)=sum_(n=0)a_(n)|x|^(n), where a_(i) are real constants,then f(x) is

If f(x)=sum_(n=0)a_(n)|x|^(n), where a_(i) are real constants,then f(x) is