Home
Class 12
MATHS
Let [x] denote the largest interger not ...

Let [x] denote the largest interger not exceeding x and `{x}=x-[x]`. Then `int_(0)^(2012) e^(cos (pi{x}))/(e^(cos (pi{x}))+e^(-cos(pi{x})))dx` is equal to -

A

0

B

1006

C

2012

D

`2012 pi`

Text Solution

Verified by Experts

The correct Answer is:
B

`I=2012 underset(0)overset(1)(int) e^(cos pi x)/(e^(cos pi x)+e^(-cos pi x))dx`
using king property `I =2012 underset(0)overset(1)(int) e^(-cos pi x)/(e^(-cos pi x)+e^(cos pi x))dx rArr 2I=2012 rArr I=1006`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)e^(x)cos xdx

int_(0)^( pi/2)e^(x)cos xdx

int_ (0) ^ (pi) (e ^ (cos x)) / (e ^ (cos x) + e ^ (- cos x)) dx =

int_(0)^(pi)(e^(cos x))/(e^(cos x)+e^(-cos x))dx=

int_(0)^( pi)(1)/(1+e^(cos x))dx

int_(0)^(pi//2)(e^(sin x))/(e^(sin x)+e^(cos x))dx=

int_(0)^(pi//2)(e^(sin x)- e^(cos x)))dx=

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to