Home
Class 12
MATHS
The value of lim(n rarr oo)(1/sqrt(4n^(2...

The value of `lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2)))` is -

A

`1/4`

B

`pi/12`

C

`pi/4`

D

`pi/6`

Text Solution

Verified by Experts

The correct Answer is:
D

`lim_(n rarr oo) sum_(r=1)^(n) (1)/sqrt(4n^(2)-r^(2))=lim_(n rarr oo)1/n sum_(r=1)^(n) (1)/sqrt(4-(r//n)^(2))`
`=underset(0)overset(1)(int) (dx)/sqrt(4-x^(2))=(sin^(-1) (x/2))_(0)^(1)=pi/6`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

The value of lim_(n rarr oo)[3sqrt((n+1)^(2))-3sqrt((n-1)^(2))] is

The value of lim_(nto oo)(1/(sqrt(n^(2)))+1/(sqrt(n^(2)+1))+…..+1/(sqrt(n^(2)+2n))) is

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

Evaluate: lim_(n rarr oo)((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+...+(1)/(sqrt(3n^(2))))

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_ (n rarr oo) (sqrt (n ^ (4) +1) -sqrt (n ^ (4) -1))

lim_(n rarr oo)(1)/(n^(3))(sqrt(n^(2)+1)+2sqrt(n^(2)+2^(2))+(-n)/(n sqrt((n^(2)+n^(2))))=

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is