Home
Class 12
MATHS
The minimum value of n for which (2^(2)+...

The minimum value of n for which `(2^(2)+4^(2)+6^(2)+...+(2n)^(2))/(1^(2)+3^(2)+5^(2)+...+(2n-1)^(2)) lt 1.01`

A

is 101

B

is 121

C

is 151

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
C

`x/((2n(2n+1)(4n +1))/(6)-x) lt 1.01`
`2.01x lt (1.01) (2n(2n+1)(4n+1))/(6)`
`2.01. (4n(n+1)(2n+1))/(6) lt (1.01) (2n(2n+1)(4n+1))/(6)`
`2.01/1.01 lt (4n+1)/(2n+2) rArr n gt 150.5`
Promotional Banner

Similar Questions

Explore conceptually related problems

(2^(2)+4^(2)+6^(2)+...+(2n)^(2))/(1^(2)+3^(3)+5^(2) +...+(2n-1)^(2))rarr exceed 1.01i

For (2^(2)+4^(2)+6^(2)+.......+(2n)^(2))/(1^(2)+3^(2)+......+(2n-1)^(2)) to exceed 1.01, the maximum value of n is-

If nEN and a_(n)=2^(2)+4^(2)+6^(2)+....+(2n)^(2) and b=1^(2)+3^(2)+5^(2)+...(2n-1)^(2). Find the value lim_(n rarr oo)((sqrt(a_(n))-sqrt(b_(n)))/(sqrt(n)))

The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is

(1^(3)+2^(3)+...+n^(3))/(1+3+5+...+(2n-1))=((n+1)^( 2))/(4)

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

The value of hat r(2n+1)C_(0)^(2)+^(2n+1)C_(1)^(2)+^(2n+1)C_(2)^(2)+....+^(2n+1)C_(n)^(2) is equal to

Let the sequence a_(1),a_(2),a_(3),...,a_(n) from an A.P.Then the value of a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-...+a_(2n-1)^(2)-a_(2n)^(2) is (2n)/(n-1)(a_(2n)^(2)-a_(1)^(2))(b)(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))(n)/(n+1)(a_(1)^(2)-a_(2n)^(2))(d)(n)/(n-1)(a_(1)^(2)+a_(2n)^(2))

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)