Home
Class 12
MATHS
Let f(x)=x^(3)+ax^(2)+bx+c, where a, b, ...

Let `f(x)=x^(3)+ax^(2)+bx+c`, where a, b, c are real numbers. If `f(x)` has a local minimum at `x = 1` and a local maximum at `x=-1/3` and `f(2)=0`, then `int_(-1)^(1) f(x) dx` equals-

A

`14/3`

B

`(-14)/3`

C

`7/3`

D

`(-7)/3`

Text Solution

Verified by Experts

The correct Answer is:
B

`f'(x)=3(x^(2)-2/3x-1/3)=3x^(2)-2x-1`
`f(x)=x^(3)-x^(2)-x+lambda`
`f(2)=8-4-2+lambda=0 rArr lambda=-2`
`f(x)=x^(3)-x^(2)-x-2`
`underset(-1)overset(1)(int) f(x) dx=-2 underset(0)overset(1)(int) (x^(2)+2)dx =-2 (1/3 +2)=(-14)/3`
Promotional Banner

Similar Questions

Explore conceptually related problems

A cubic polynomial function f(x) has a local maxima at x=1 and local minima at x=0 .If f(1)=3 and f(0)=0, then f(2) is

Write True/False: If f'( c )=0 then f(x) has a local maximum or a local minimum at x=c

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If f(x)=x^(3)+ax^(2)+bx+c is minimum at x=3 and maximum at x=-1, then-

Let f(x) = {(|x-1| + a,"if " x le 1),(2x + 3,"if " x gt 1):} . If f(x) has a local minimum at x=1, then

If f(x)=x^(3)+ax^(2)+bx+c is minimum at x=3 and maximum at x=-1, then

Let f(x)=x^(3)-3x^(2)+6 find the point at which f(x) assumes local maximum and local minimum.

Let f(x) = {(|x-1|+ a",",x le 1),(2x + 3",",x gt 1):} . If f(x) has local minimum at x=1 and a ge 5 then the value of a is

A biquadratic f(x) has a local max/min at x=1,2 and 3.f(-1)=0. If int_(-2)^(2)f(x)dx=(-1348)/(15). Then f(x)=

Let f(x)=ax^(2)+bx+c, where a,b,c in R,a!=0. Suppose |f(x)|<=1,x in[0,1], then