Home
Class 12
MATHS
For each positive interger n, define f(n...

For each positive interger n, define `f_(n)(x)=` minimum `(x^(n)/(n!), ((1-x)^(n))/(n!))`, for `0 le x le 1`. Let `I_(n)= int_(0)^(1) f_(n) (x) dx, n ge 1`. Then `I_(n)=sum_(n=1)^(oo) I_(n)` is equal to -

A

`2sqrt(e)-3`

B

`2sqrt(e)-2`

C

`2sqrt(e)-1`

D

`2sqrt(e)`

Text Solution

Verified by Experts

The correct Answer is:
A

`I_(n)=underset(0)overset(1//2)(int) x^(n)/(n!) dx +underset(1//2)overset(1)(int) ((1-x)^(n))/(n !) dx=1/((n+1)!) ((1/2)^(n+1)+(1/2)^(n+1))=((1/2)^(n))/((n+1)!)`
`sum_(n=1)^(oo) I_(n)=((1//2)/(2!)+((1//2)^(2))/(3!)+....)=2 sqrt(e)-3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=