Home
Class 12
MATHS
For (2^(2)+4^(2)+6^(2)+.......+(2n)^(2))...

For `(2^(2)+4^(2)+6^(2)+.......+(2n)^(2))/(1^(2)+3^(2)+......+(2n-1)^(2))` to exceed 1.01, the maximum value of n is-

A

99

B

100

C

101

D

150

Text Solution

Verified by Experts

The correct Answer is:
D

`(2^(2)(1^(2)+2^(2)+3^(2)+......+n^(2)))/[[1^(2)+2^(2)+3^(2)+.......+(2n)^(2)]-2^(2)(1^(2)+2^(2)+3^(2)+.....n^(2)))`
`((2^(2)n(n+1)(2n+1))/(6))/((2n(2n+1)(4n+1))/(6)-(2^(2)n(n+1)(2n+1))/(6))gt1.0`
`(2n+2)/(2n-1)gt1.01`
`1+(3)/(2n-1)gt1.01`
`2n-1gt300`
`nlt150.5`
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-2 MATHEMATICS|5 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-2(MATHEMATICS)|10 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise exercise|18 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

(2^(2)+4^(2)+6^(2)+...+(2n)^(2))/(1^(2)+3^(3)+5^(2) +...+(2n-1)^(2))rarr exceed 1.01i

The minimum value of n for which (2^(2)+4^(2)+6^(2)+...+(2n)^(2))/(1^(2)+3^(2)+5^(2)+...+(2n-1)^(2)) lt 1.01

If nEN and a_(n)=2^(2)+4^(2)+6^(2)+....+(2n)^(2) and b=1^(2)+3^(2)+5^(2)+...(2n-1)^(2). Find the value lim_(n rarr oo)((sqrt(a_(n))-sqrt(b_(n)))/(sqrt(n)))

(1^(3)+2^(3)+...+n^(3))/(1+3+5+...+(2n-1))=((n+1)^( 2))/(4)

1.2+2.2^(2)+3.2^(3)+....+n.2^(n)=(n-1)2^(n-1)+2

1.2+2.2^(2)+3.2^(3)+....+n.2^(n)=(n-1)2^(n-1)+2

1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^(2)+6n-1))/(3)

Lt_(n rarr oo)(1.3.5...(2n-1))/(2.4.6...(2n))=