Home
Class 12
MATHS
The equation sqrt(x+3-4sqrt(x-1))+sqrt(x...

The equation `sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=` hs

A

No solution

B

Exactly two distinct solutions

C

Exactly four distinct solutions

D

Infinitely may solutions

Text Solution

Verified by Experts

The correct Answer is:
D

`sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1,Xge1`
`sqrt((x+1)-2xx2sqrt(x-1)+4)+sqrt((x-1)-6sqrt(x-1)+9)=1`
`|sqrt(x-1)-2|+|sqrt(x-1)-3|=1`
Case - 1
`sqrt(x-1)-2+sqrt(x-1)-3=1" "xge10`
`2sqrt(x-1)=6`
x = 10
Case - II
`sqrt(x-1)-2-sqrt(x-1)+3=1" "5lexle10`
Case - III
`-sqrt(x-1)+2-sqrt(x-1)+3=1" "1lexle5`
`2sqrt(x-1)=4`
x = 5
Promotional Banner

Similar Questions

Explore conceptually related problems

the equation is sqrt(x+3-4sqrt(x-1))+sqrt(x+15-8sqrt(x-1))=2 has:

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

The equation sqrt(x+1)-sqrt(x-1)=sqrt(4x-1) has

( Solve )/(sqrt(x+3-4sqrt(x-1)))+sqrt(x+8-6sqrt(x-1))=1

(sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3

sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1))>(3)/(2)