Home
Class 12
MATHS
The maxinum value M of 3^(x)+5^(x)-9^(x)...

The maxinum value M of `3^(x)+5^(x)-9^(x)+15^(x)-25^(x)`, as x varies over reals, satisfies-

A

3 lt M lt 5

B

0 lt M lt 2

C

9 lt M lt 25

D

5 lt M lt 9

Text Solution

Verified by Experts

The correct Answer is:
A, B

`Mlea+b-ab`
`Mlt1-(a-1)(b-1)" min is zero"`
hence `0ltMlt2`
Promotional Banner

Similar Questions

Explore conceptually related problems

15^(x)-25.3^(x)-9.5^(x)+225>=0

If x is real,the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is

(3x+15)/(5x+25)

The values of x satisfying the equation 5^(2x)-5^(x+3)+125=5^(x) are

Find the value of x , 3/5 = x/-25

If M and m are the maximum and minimum values of (y)/(x) for pair of real numbers (x, y) which satisfy the equation (x-3)^(2)+(y-3)^(2)=6 , then the value of (1)/(M)+(1)/(m) is

The value of x satisfying (x)/(x+2)=(x+3)/(5(x+11)) is