Home
Class 12
MATHS
Let f:RrarrR be the function f(x)=(x-a(1...

Let `f:RrarrR` be the function `f(x)=(x-a_(1))(x-a_(2))+(x-a_(2))(x-a_(3))+(x-a_(3))(x-a_(1))` with `a_(1),a_(2),a_(3) in R`. The fix `f(x)ge0` if and only if -

A

At least two of `a_(1),a_(2),a_(3)` are equal

B

`a_(1)=a_(2)=a_(3)`

C

`a_(1),a_(2),a_(3)` are all distinct

D

`a_(1), a_(2),a_(3)`, are all positive and distinct

Text Solution

Verified by Experts

The correct Answer is:
B

Only when `a_(1)=a_(2)=a_(3)`
In other cases f(x) will take both positive and negative values
Promotional Banner

Similar Questions

Explore conceptually related problems

1+(x)/(a_(1))+(x(x+a_(1)))/(a_(1)a_(2))+.........+(x(x+a_(1))(x+a_(2))(x+a_(n-1)))/(a_(1)a_(2)a_(n))

The equation (A_(1))/(x-a_(1))+(A_(2))/(x-a_(2))+(A_(3))/(x-a_(3))=0, where A_(1),A_(2),A_(3)<0 and a_(1)

Let a_(1),a_(2),...,a_(n) be fixed real numbers and let f(x)=(x-a_(1))(x-a_(2))(x-a_(3))...(x-a_(n)). Find lim_(xtoa_(1))f (x). If anea_(1),a_(2),..,a_(n),Compute lim_(xtoa) f(x).

Let P(x)=1+a_(1)x+a_(2)x^(2)+a_(3)x^(3) where a_(1),a_(2),a_(3)in I and a_(1)+a_(2)+a_(3) is an even number,then

If log (1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3)+… then a_(3)+a_(6)+a_(9)+.. is equal to

Let f(x)=a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+......+a_(n),(a_(0)!=0) if a_(0)+a_(1)+a+_(2)+......+a_(n)=0 then the root of f(x) is

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)

If (1+x-3x^(2))^(2145)=a_(0)+a_(1)x+a_(2)x^(2)+ then a_(0)-a_(1)+a_(2)-... ends with

Let a_(1),a_(2),.......,a_(n) be fixed real numbers and define a function f(x)=(x-a_(1))(x-a_(2)) ......(x-a_(n)) , what is lim f(x) ? For some anea_(1),a_(2),.........a_(n) , compute lim_(Xrarr1) f(x)

Evaluate : lim_(x rarr0)((1-cos(a_(1)x)*cos(a_(2)x)*cos(a_(3)x))......cos(a_(n)x))/(x^(2)) where a_(1),a_(2),a_(3).........a_(n)in R