Home
Class 12
MATHS
The value (int(0)^(pi//2) (sinx)^(sqrt2+...

The value `(int_(0)^(pi//2) (sinx)^(sqrt2+1)dx)/(int_(0)^(pi//2)(sinx)^(sqrt2-1)dx)` is -

A

`(sqrt2+1)/(sqrt2-1)`

B

`(sqrt2-1)/(sqrt2+1)`

C

`(sqrt2+1)/(sqrt2)`

D

`s-sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
D

`I_(1)-overset(pi//2)underset(0)int(sin x)^(sqrt2).sin"xdx "I_(2)=overset(pi//2)underset(0)int(sin x)^(sqrt2-1)"dx"`
`I_(1)=((sinx)^(sqrt2)intsin"x dx")_(0)^(pi//2)-overset(pi//2)underset(0)int(sqrt2(sinx)^(sqrt2-1)cosx intsin"x dx")`
`=-(cos x(sinx)^(sqrt2))_(0)^(pi//2)+sqrt2overset(pi//2)underset(0)int(sinx)^(sqrt2-1)(1-sin^(2)x)dx`
`(I_(1))/(I_(2))=(sqrt2)/(1+sqrt2)xx((sqrt2-1))/((sqrt2-1))=2-sqrt2`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

The value of int_(0)^(pi//2) log (sinx) dx is

If I_(1)=int_(0)^( pi/2)(sin x)^(sqrt(3)+1)dx,I_(2)=int_(0)^(pi/2)(sin x)^(sqrt(3)-1))dx then (I_(1))/(I_(2))=

int_(0)^(pi//2)sqrt(1+sinx)dx

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

int_(pi/3)^(pi/2) sinx dx

int_(0)^(pi//2)(sinx)/((1+cos^(2)x))dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx