Home
Class 12
MATHS
Let [x] and {x} be the integer part and ...

Let [x] and {x} be the integer part and fractional part of a real number x respectively. The value of the integral `int_(0)^(5)[x]{x}dx` is -

A

`5//2`

B

5

C

`34.5`

D

`35.5`

Text Solution

Verified by Experts

The correct Answer is:
B

`int_(0)^(5)[x]{x}dx=int_(0)^(5)[x](x-[x])dx=int_(0)^(1)0.dx+int_(1)^(2)1.(x-1)dx+int_(2)^(3)2(x-2)dx+int_(3)^(4)3(x-3)dx+int_(4)^(5)4(x-4)dx`
`(((x-1)^(2))/(2))^(2)+2(((x-2)^(2))/(2))_(2)^(3)+3(((x-3)^(2))/(2))_(3)^(4)+4(((x-4)^(2))/(2))_(4)^(5)`
`(1)/(2)+(2)/(2)+(3)/(2)+(4)/(2)`
= 5
Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] and {x} denote the integral part and the fractional part of a real number x ,then the number of negative real number (s) x for which 2[x]-2{x}=x, is

Let {x} and [x] denote the fractional and integral part of a real number x respectively. The value (s) of x satisfying 4{x} = x + [x] is/are

Let f(x) denote the fractional part of a real number x. Then the value of int_(0)^(sqrt3)f(x^(2))dx is

If [x] and {x} represetnt the integral and fractional parts of x , respectively, then the value of sum_(r=1)^(1000)({x+r})/(1000) is

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^(15)[x]dx

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^2[x]dx

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^1{x}dx

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^2x[x]dx

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^1 2^(x-[x])dx

Let {x} and [x] denote the fractional and integral part of x, respectively.So 4{x}=x+[x]