Home
Class 12
MATHS
The value of the limit lim(x to 0) ((...

The value of the limit
`lim_(x to 0) ((x)/(sinx))^(6//x^(2))` is

A

e

B

`e^(-1)`

C

`e^(-1//6)`

D

`e^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \left( \frac{x}{\sin x} \right)^{\frac{6}{x^2}}, \] we can follow these steps: ### Step 1: Identify the form of the limit As \( x \to 0 \), we know that \( \sin x \) approaches \( x \). Thus, \( \frac{x}{\sin x} \) approaches \( 1 \). However, since we are raising this expression to the power of \( \frac{6}{x^2} \), we are dealing with an indeterminate form of type \( 1^\infty \). **Hint:** Recognize the indeterminate form and consider taking the natural logarithm to simplify the limit. ### Step 2: Take the natural logarithm Let \[ L = \lim_{x \to 0} \left( \frac{x}{\sin x} \right)^{\frac{6}{x^2}}. \] Taking the natural logarithm, we have: \[ \ln L = \lim_{x \to 0} \frac{6}{x^2} \ln \left( \frac{x}{\sin x} \right). \] **Hint:** Rewrite \( \ln \left( \frac{x}{\sin x} \right) \) using properties of logarithms. ### Step 3: Simplify the logarithm We can rewrite: \[ \ln \left( \frac{x}{\sin x} \right) = \ln x - \ln(\sin x). \] Thus, we have: \[ \ln L = \lim_{x \to 0} \frac{6}{x^2} \left( \ln x - \ln(\sin x) \right). \] **Hint:** Use the Taylor series expansion for \( \sin x \) around \( x = 0 \). ### Step 4: Use Taylor series for \( \sin x \) The Taylor series expansion of \( \sin x \) is: \[ \sin x = x - \frac{x^3}{6} + O(x^5). \] Thus, \[ \ln(\sin x) \approx \ln\left(x - \frac{x^3}{6}\right) \approx \ln x + \ln\left(1 - \frac{x^2}{6}\right) \approx \ln x - \frac{x^2}{6} + O(x^4). \] **Hint:** Substitute this approximation back into the limit. ### Step 5: Substitute and simplify Now substituting back, we get: \[ \ln L = \lim_{x \to 0} \frac{6}{x^2} \left( \ln x - \left( \ln x - \frac{x^2}{6} \right) \right) = \lim_{x \to 0} \frac{6}{x^2} \left( \frac{x^2}{6} \right) = \lim_{x \to 0} 1 = 1. \] **Hint:** Exponentiate to find \( L \). ### Step 6: Exponentiate to find \( L \) Since \( \ln L = 1 \), we have: \[ L = e^1 = e. \] Thus, the value of the limit is \[ \boxed{e}. \]

To solve the limit \[ \lim_{x \to 0} \left( \frac{x}{\sin x} \right)^{\frac{6}{x^2}}, \] we can follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

the value of the limit lim_(x rarr0)((x)/(sin x))^((6)/(x^(2))) is

lim_(x to 0) (sin(sinx))/x

The value of the limit lim_(x to -oo) (sqrt(4x^(2) - x )+2x) is

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(x to 0) (e^x-e^sinx)/(x-sinx)

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x

The value of lim_(x to 0) (e^x-e^sinx)/(2(x-sinx)) , is

Evaluate the following limits : lim_(x to 0)(e^(x)-sinx-1)/x

The value of limit lim_(x rarr0)[(1)/(x^(2))-(1)/(sin^(2)x)]

Evaluate the following : lim_(x to 0)(x^(2))/(sinx^(2))