Home
Class 12
MATHS
Let vec(a)=6vec(i)-3vec(j)-6vec(k) and v...

Let `vec(a)=6vec(i)-3vec(j)-6vec(k) and vec(d)=vec(i)+vec(j)+vec(k)."Suppose that" vec(a)=vec(b)+vec(c) "where" vec(b) "is parallel to" vec(d) and vec(c) " si perpendicular to" vec(d). "Then" vec(c) "is-"`

A

`5vec(i)-4vec(j)-vec(k)`

B

`7vec(i)-2vec(j)-5vec(k)`

C

`4vec(i)-5vec(j)+vec(k)`

D

`3vec(i)+6vec(j)-9vec(k)`

Text Solution

Verified by Experts

The correct Answer is:
B

`vec(b)=lamda(hati+hat(j)+hat(k))`
`vec(a)=vec(b)+vec(c)`
`vec(c)=vec(a)-lamda (hati+hat(j)+hat(k))`
`vec(c)=(6hat(i)-3hatj-6hatk)-lamda(hati+hat(j)+hat(k))`
`vec(c)(6-lamda)hat(i)+(-3-lamda)hat(j)+(-6-lamda)hat(k)`
`vec(c).vec(lamda)=6-lamda-3-lamda-6-lamda=0`
`3lamda=3`
`lamda=-1`
`vec(c)=7hat(i)-2hat(j)-5hat(k)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec(a) = hat(i) + hat(j), vec(b) = 3 hat(i) + 4 hat(k) and vec (b) = vec(c) + vec(d) , where vec(c) is parallel to vec(a) and vec(d) is perpendicular to vec(a) . What is vec(c) equal to ?

Consider the following for the next two items that follows Let vec(a) = hat(i) + hat(j), vec(b)= 3hat(i) + 4hat(k) and vec(b) =vec(c ) +vec(d) , where vec(c ) is parallel to vec(a) and vec(d) is perpendicular to vec(a) What is vec(c ) equal to ?

If vec(a) xx vec(b)= vec(c) xx vec(d) and vec(a) xx vec(c) =vec(b) xx vec(d)," show that " (vec(a)- vec(d)) " is parallel to " (vec(b)-vec(c)) , it being given that a !=d and b != c.

vec(i)timesvec(j)= (a) vec0 (b) 1 (c) -vec k (d) vec k

Prove that: [vec(a)" "vec(b)" "vec( c )+vec(d)]=[vec(a)" "vec(b)" "vec( c )]+[vec(a)" "vec(b)" "vec(d)] .

Given that vec(a)=vec(i)+vec(j) +vec(k), vec(b)=vec(i)-vec(j)+vec(k), vec(c)=vec(i)+vec(j)-vec(c)=vec(i)+vec(j)-vec(k) , the value of (vec(a).vec(b))+(vec(b).vec(c))+(vec(c).vec(a)) is ______?

Let veca=vec(i)-vec(j)+3vec(k),vec(b)=3vec(i)-5vec(j)+6vec(k) .Then integer part of the magnitude of the projection of 2vec a-vec b on to the vector vec a+vec b is

Examine if vec(i) - 3vec(j) + 2vec(k), 2vec(i) - 4vec(j) - vec(k) and 3vec(i) + 2vec(j) - vec(k) are linearly independent or dependent .

If vec a=i+j,vec b=j+k and vec c=k+i write unit vectors parallel to vec a+vec b-2vec -