Home
Class 12
MATHS
Let x=(sqrt(50)+7)^(1//3)-(sqrt(50)-7)^(...

`Let x=(sqrt(50)+7)^(1//3)-(sqrt(50)-7)^(1//3)`.Then-

A

x=2

B

x=3

C

x is a rational number, but not an integer

D

x is an irrational number

Text Solution

Verified by Experts

The correct Answer is:
A

`x=(sqrt(50)+7)^(1//3)-(sqrt(50)+7)^(1//3)`
`x^(3)=(sqrt(50)+7)-(sqrt(50)-7)-3(sqrt(50)+7)(sqrt(50)+7)^(1//3)-(sqrt(50)-7)-(sqrt(50)+7)^(1//3)`
`x^(3)=14-3(1)(x)`
`x^(3)=14-3x`
`x^(3)+3-14=0`
x=2
Promotional Banner

Similar Questions

Explore conceptually related problems

Can You Solve This || Answer Is Unpredictable || (7+sqrt50)^(1/3) - (7-sqrt50)^(1/3)

sqrt(5){(sqrt(5)+1)^(50)-(sqrt(5)-1)^(50)}

Let a=sqrt(57+40sqrt2)-sqrt(57-40sqrt2) and b=sqrt(25^(1/(log_8(5)))+49^(1/(log_6(7)) and c is the value of x^3-3x-14 where x=(7+5sqrt2)^(1/3)-1/(7+5sqrt2)^(1/3). Find the value of (a+b+c)

(1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7)))

The number (7+5sqrt(2))^((1)/(3))+(7-5sqrt(2))^((1)/(3)) ,is equal to

(sqrt(7)-sqrt(5))^3 - (sqrt(7)+sqrt(5))^3

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

The value of (1)/( sqrt(7) - sqrt(6)) - (1)/( sqrt(6) - sqrt(5) ) +(1)/( sqrt(5) -2) - (1)/( sqrt(8) - sqrt(7) ) +(1)/( 3- sqrt(8)) is