Home
Class 12
MATHS
Let (1+x+x^(2))^(2014)=a(0)+a(1)x+a(2)...

Let
`(1+x+x^(2))^(2014)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . . +a_(4028)x^(4028),` and let
`A=a_(0)-a^(3)+a_(6)- . . . +a_(4026)`
`B=a_(1)-a_(4)+a_(7)- . . . . . . . -a_(4027)`,
`C=a_(2)-a_(5)+a_(8)- . . . .+a_(4028)`,
Then-

A

`|A|=|B|gt|C|`

B

`|A|=|B|lt|C|`

C

`|A|=|C|gt|B|`

D

`|A|=|C|lt|B|`

Text Solution

Verified by Experts

The correct Answer is:
D

`(1+x+x^(2))^(2014)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . . +a_(4028)x^(4028),`
put x=-1
`1=1=a_(0)-a_(2)+a_(2)-a_(3)+a_(4)-a_(5)+a_(6)-a_(7). . . .` . . . (1)
`"put"x=-omega`
`(2omega)^(2014)=(1-omega+omega^(2))^(2014)=a_(0)-a_(1omega)+a_(2omega^(2))+a_(3)+a_(4)omega^(2)+a_(6). . . . . . . ` . . .(2)
`"Put"x=-omega^(2)`
`(2omega^(2))^(2014)=(a-omega^(2)+omega)^(2014)=a_(0)-a_(3)+a_(4)omega^(2)+a_(2)omega-a_(3)+a_(4)omega^(2)-a_(5)omega . . . . . . .` (3)
Now, (1)+(2)+(3)
`rArr1+(2omega)^(2014)+(2omega^(2))^(2014)=3(a_(0)-a_(3)+a_(6) . . . . . . . . .`
`rArra_(0)-a_(3)+a_(6). . . . . . . .=(1+2^(2014)omega+2^(2014)omega^(2))/(3)`
`A=(1-2^(2014))/(3)`
`|A|=(2^(2014)-1)/(3)`
`and (1)+(2)xxomega+(3)omega^(2)`
`rArr(1+2^(2014).omega^(2014).omega^(2015)+2^(2014).omega^(4030))/(3)=a_(2)-a_(5)+a_(8). . . . .`
`rArr(1+2^(2014)+omega^(2015)+2^(2014).omega^(4030))/(3)=C`
`rArrC=(1-2^(2014))/(3)rArr|C|=(2^(2014)-1)/(3)`
and similarly `(1)+(2)xxomega^(2)+(3)xxomega`
`B=(1+2^(2014).omega^(2014).omega^(2)+2^(2014).(omega^(2))^(2014).omega)/(3)`
`=(1+2^(2014).omega^(2016)+2^(2014).omega^(4029))/(3)`
`|B|=(1+2^(2015))/(3)`
`:.|B|gt|A|=|C|`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x-2x^(2))^(20)=a_(0)a_(1)x=a_(2)x^(2)+a_(3)x^(3)+...+a_(40)x^(40) then find the value of a_(1)+a_(3)+a_(5)+...+a_(39)

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1 + x + x^(2))^(48) = a_(0) + a_(1) x + a_(2) x^(2) + ... + a_(96) x^(96) , then value of a_(0) - a_(2) + a_(4) - a_(6) + … + a_(96) is

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(2n)x^(2n) , find the values of a_(0)-a_(1)+a_(2)-a_(3)......+a_(2n) ,

If (1+x-3x^(2))^(2145)=a_(0)+a_(1)x+a_(2)x^(2)+ then a_(0)-a_(1)+a_(2)-... ends with

Let (1+x+x^(2))^(5)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(10)x^(10) then value of a_(1)+a_(4)+a_(7)+a_(10) is ……

(1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(50)*x^(50) then a_(0)+a_(2)+a_(4)+...+a_(50) is :

Let (x+5)^(30)+(x-5)^(30) = a_(0)+a_(1)x+a_(2)x^(2)+...+a_(30)x^(30) for all x in R then (a_(2))/(a_(0))=