Home
Class 12
MATHS
Let a gt 0 be real number. Then the limi...

Let a `gt` 0 be real number. Then the limit
`lim_(xto2) (a^(x)+a^(3-x)-(a^(2)+a))/(a^(3-x)-a^(x//2))`
is-

A

2 log a

B

`-(4)/(3)` a

C

`(a^(2)+a)/(2)`

D

`(2)/(3)(1-a)`

Text Solution

Verified by Experts

The correct Answer is:
D

`underset(xto2)lim(a^(x)+a^(3-x)-(a^(2)+a))/(a^(3-x)-a^(x//2))((0)/(0))`
Apply L hospital rule
`underset(xto2)lim(a^(x)lna-a^(3-x)lna)/(-a^(3-x)lna-(1)/(2)a^(x//2lna))`
`(a^(2)lna-alna)/(-alna-(a)/(2)lna)=(a^(2)-a)/(-(3a)/(2))=(2)/(3)(1-a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

The value of lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto2)(x^(3)-2^(3))/(x-2)

Evaluate the following limits : lim_(x to 2)(x^(3)-2x^(2))/(x^(2)-5x+6)

Evaluate lim_(xto2) (x^(2)-5x+6)/(x^(2)-4).

Evaluate lim_(xto0) ((x+2)^(1//3)-2^(1//3))/(x)

Evaluate the following Limits lim_(xto2)[(4)/(x^(3)-2x^(2))+(1)/(2-x)]

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate the following Limits lim_(xto0)(6^(x)-2^(x)-3^(x)+1)/(log(1+x^(2)))