Home
Class 12
MATHS
The remainder when the determinant |(2...

The remainder when the determinant
`|(2014^(2014),2015^(2015),2016^(2016)),(2017^(2017),2018^(2018),2019^(2019)),(2020^(2020),2021^(2021),2022^(2022))|`
is divided by 5 is-

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the remainder when the determinant \[ D = \begin{vmatrix} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \end{vmatrix} \] is divided by 5, we can simplify the calculations by reducing each base modulo 5. ### Step 1: Calculate each base modulo 5 - \(2014 \mod 5 = 4\) - \(2015 \mod 5 = 0\) - \(2016 \mod 5 = 1\) - \(2017 \mod 5 = 2\) - \(2018 \mod 5 = 3\) - \(2019 \mod 5 = 4\) - \(2020 \mod 5 = 0\) - \(2021 \mod 5 = 1\) - \(2022 \mod 5 = 2\) ### Step 2: Rewrite the determinant with reduced bases Now we can rewrite the determinant \(D\) as: \[ D \equiv \begin{vmatrix} 4^{2014} & 0^{2015} & 1^{2016} \\ 2^{2017} & 3^{2018} & 4^{2019} \\ 0^{2020} & 1^{2021} & 2^{2022} \end{vmatrix} \mod 5 \] ### Step 3: Simplify the powers - \(0^{2015} = 0\) and \(0^{2020} = 0\), so the first column and the third row will contribute zeros to the determinant. Thus, the determinant simplifies to: \[ D \equiv \begin{vmatrix} 4^{2014} & 1 \\ 2^{2017} & 3^{2018} \end{vmatrix} \mod 5 \] ### Step 4: Calculate the determinant of the 2x2 matrix The determinant of a 2x2 matrix is given by: \[ \text{det} = ad - bc \] For our matrix: \[ D \equiv 4^{2014} \cdot 3^{2018} - 1 \cdot 2^{2017} \mod 5 \] ### Step 5: Calculate powers modulo 5 Now we need to calculate \(4^{2014} \mod 5\), \(3^{2018} \mod 5\), and \(2^{2017} \mod 5\). Using Fermat's Little Theorem, we know that for any integer \(a\) not divisible by a prime \(p\): \[ a^{p-1} \equiv 1 \mod p \] Thus: - \(4^{4} \equiv 1 \mod 5\) implies \(4^{2014} \equiv 4^{2} \equiv 16 \equiv 1 \mod 5\) - \(3^{4} \equiv 1 \mod 5\) implies \(3^{2018} \equiv 3^{2} \equiv 9 \equiv 4 \mod 5\) - \(2^{4} \equiv 1 \mod 5\) implies \(2^{2017} \equiv 2^{1} \equiv 2 \mod 5\) ### Step 6: Substitute back into the determinant Now substituting these values back into the determinant: \[ D \equiv (1 \cdot 4) - (1 \cdot 2) \mod 5 \] \[ D \equiv 4 - 2 \equiv 2 \mod 5 \] ### Final Answer The remainder when the determinant is divided by 5 is: \[ \boxed{2} \]

To find the remainder when the determinant \[ D = \begin{vmatrix} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \end{vmatrix} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

|[2017,2018,2019],[2018,2019,2020],[ 2019,2020,2021]| (A) 2019 (B) -1 (C) 2020 (D) 0

If A=[[-4,-13]] ,then the determinant of the matrix (A^(2016)-2A^(2015)-A^(2014)) is (A) 2014(B)-175(C)2016(D)-25

determinant of this matrix :((1^2016,2^2016,3^2016,...2018^2016),(2^2016,3^2016,4^2016,...2019^2016),(3^2016,4^2016,5^2016,...2020^2016),(...2018^2016,....2019^2016,2020^2016,....4035^2016))

Find the remainder when 1^(2019)+2^(2019)+3^(2019)+....2020^(2019) is divided by 2019.

The function f(x)=int_(-2015)^(x)t(e^(t)-e^(2))(e^(t)-1)(t+2014)^(2015)(t-2015)^(2016)(t-2016)^(2017) dt has

Find the sum 2017+1/4(2016+1/4(2015+…+1/4(2+1/4(1))..))

The coefficient of x^(2017) in sum_(r = 0)^(2020)2020C_(r)(x-2018)^(2020-r)(2017)^(r) is

If 2^(2020)+2021 is divided by 9, then the remainder obtained is

If (1)(2020)+(2)(2019)+(3)(2018)+…….+(2020)(1)=2020xx2021xxk, then the value of (k)/(100) is equal to