Home
Class 12
MATHS
The number of different possible values ...

The number of different possible values for the sum x+y+z, where x,y,z are real numbers such that `x^(4)+4y^(4)+16z^(4)+64=32 xyz` is (A) 1 (B) 2 (C) 4 (D) 8

A

1

B

2

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
C

Applying Am`ge`gm.
`(x^(4)+4y^(4)+16z^(4)+64)/(4) ge(4^(6)x^(4)y^(4)z^(4))^(1//4)`
`x^(4)+4y^(4)+16z^(4)+64ge32|xyz|`
So equal when each term is equal
`:. X^(4)+4y^(4)=16z^(4)=64`
`impliesx=pm2sqrt(2)`
`y=pm2`
`x= pmsqrt(2)`
For x.y.z
For `X^(4)+4y^(4)+16z^(4)_64=32xyz`
Either each of x,y,z is (+)ve`to` 1 case/
Or two of x,y,z are (-)ve `to ` 3 cases
`:.` 4 cases of different (x,y,z) triplets
`:.` 4 possible x+y+z values (as `x ne y ne z`)
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise Part 2 Mathematics|15 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise Matematics|20 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-1 MATHEMATICS|20 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

If a,y and z are real numbers such that x^(2)+y^(2)+2z^(2)=4x-2z+2yz-5, then the possible value of (x-y-z) is :

If 3x+4y+z=5, where x,y,z in R, then minimum value of 26(x^(2)+y^(2)+z^(2)) is

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z

If x,y,z are real and 4x^(2)+9y^(2)+16z^(2)=2xyz{(6)/(x)+(4)/(y)+(3)/(z)}