Home
Class 12
MATHS
Suppose z is any root of 11z^(8)+20 i z^...

Suppose `z` is any root of `11z^(8)+20 i z^(7)+10 iz-22=0`, where `i=sqrt(-1)`. Then `s=|z|^(2)+|z|+1` satisfies

A

`S le 3`

B

`3 lt S lt 7`

C

`7 le S lt 13`

D

`S ge 13`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise Part 2 Mathematics|15 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise Matematics|20 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-1 MATHEMATICS|20 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

Suppose z is any root of 11z^8+20iz^7+10iz-22=0 where i=sqrt-1 .Then, S=|z|^2+|z|+1 satisfies

If 8iz^(3)+12z^(2)-18z+27i=0, (where i=sqrt(-1)) then

If z=i^(i) where i=sqrt(-)1 then |z| is equal to

Consider the given equation 11z^(10)+10iz^(9)+10iz-11=0, then |z| is

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If z satisfies |z-1|<|z+3| then omega=2z+3-i, (where i=sqrt(-1) ) sqtisfies

For a complex z , let Re(z) denote the real part of z . Let S be the set of all complex numbers z satisfying z^(4)- |z|^(4) = 4 iz^(2) , where I = sqrt(-1) . Then the minimum possible value of |z_(1)-z_(2)|^(2) where z_(1),z_(2) in S with Re (z_(1)) gt 0 and Re (z_(2)) lt 0 , is ....