Home
Class 12
MATHS
24*e^(mx)*cos nx...

24*e^(mx)*cos nx

Promotional Banner

Similar Questions

Explore conceptually related problems

e^(mx).cos n x

derivative of e^(mx).cos n x

If underset( x rarr 0 )( "lim") ( e^(-nx) + e^(nx) -cos""( nx)/( 2) - kx^(2))/( ( sin x - tan x )) exists and finite , then possible values of 'n' and 'k' is :

The differential equation of y= e^(2x) (A cos mx +B sin mx) is

underset(xrarr0)lim (1-cos mx)/(1-cos nx) .

lim _(xto0) (1-cos mx)/(1-cos nx) is equal to-

underset(x to 0)"Lt" (1-cos mx)/(1-cos nx)=

lim_ (x rarr0) [(1-cos mx) / (1-cos nx)] = (m ^ (2)) / (n ^ (2))

lim_(x rarr0)(1-cos mx)/(1-cos nx), n!=0

lim_(x rarr0)(1-cos mx)/(1-cos nx),n!=0