Home
Class 12
MATHS
" Letwixibe the inverse of the function ...

" Letwixibe the inverse of the function "f(x)" and "r(x)-(1)/(1*x^(3))" then "(d)/(dx)+(x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let phi(x) be the inverse of the function f(x) and f'=(1)/(1+x^(5)), then (d)/(dx)phi(x) is

If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

Differentiation of the function : f(x) = 4x+3

Differentiate the functions given w.r.t.x: (x+(1)/(x))^(x)+x^((1+(1)/(x)))

Differentiate the following functions w.r.t.x : sqrt((1+e^x)/(1-e^x))

Differentiate w.r.t x the function (log x)^(log x), x>1

Differentiate function with respect to x,f(x)= (x^(4)+x^(3)+x^(2)+1)/(x)

Differentiate function with respect to x,f(x)= (x^(4)+x^(3)+x^(2)+1)/(x)

Statement 1: If differentiable function f(x) satisfies the relation f(x)+f(x-2)=0AAx in R , and if ((d/(dx)f(x)))_(x=a)=b ,t h e n((d/(dx)f(x)))_(a+4000)=bdot Statement 2: f(x) is a periodic function with period 4.