Home
Class 12
MATHS
(e^(x)*log(sin e^(x)))/(tan(e^(x)))...

(e^(x)*log(sin e^(x)))/(tan(e^(x)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int ((e^(x)-e^(-x))dx)/((e^(x)+e^(-x))log(e^(x)+e^(-x))) is equal to -

int ((e^(x)-e^(-x))dx)/((e^(x) + e^(-x)) log (cosh x) =

e ^(x log a)e^(x)

Integrate the following w.r.t. x: e^x frac{log(sin e^x)}{tan e^x}

int (e^(x)+e^(-x))/((e^(x)-e^(-x)) log sin hx)dx=

Evaluate int((e^(x)-e^(-x))/(e^(x)+e^(-x)))dx and the value is (A)log|e^(x)+e^(-x)|(B)log|e^(x)+e^(-x)|+k(C)log|e^(x)-e^(-x)|+k(D) none of these

If f(x)=tan^(-1)((ln(e//x^(3)))/(ln (ex^(3))))+tan^(-1)(ln(e^(4)x^(3))/(ln(e//x^(12))))(AA x ge e) incorrect statement is

If f(x)=tan^(-1)((ln(e//x^(3)))/(ln (ex^(3))))+tan^(-1)(ln(e^(4)x^(3))/(ln(e//x^(12))))(AA x ge e) incorrect statement is

y = (tan x) / (x) log_ (e) ((e ^ (x)) / (x ^ (x)))

lim_(x rarr0)(e^(x)+log{(1-x)/(e)})/(tan x-x) equals