Home
Class 12
MATHS
The value of int0^pi(sin(n+1/2)x)/(sin(x...

The value of `int_0^pi(sin(n+1/2)x)/(sin(x/2)dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^pi (sin(1+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

Prove that the value of : int_0^pi(sin(n+1/2)x)/sin(x/2)dx=pi

The value of int_(0)^( pi)(sin(1+(1)/(2))x)/(sin((x)/(2)))dx is,(a) n in I,n>=0(pi)/(2)(b)0(c)pi(d)2 pi

Prove that cosx+cos2x+ … + cosnx=(sin(n+1/2)x-sin(x/2))/(2sin(x/2)) and hence prove that : int_0^1(sin(n+1/2)x)/sin(x/2)dx=pi

int_0^(pi) sin(x/2).cos(x/2) dx =

For n in N , the value of int_(0)^(pi) sin^(n) x*cos^(2n-1)x dx is

The value of (int_0^(pi//2)(sin x)^(sqrt(2)+1)dx)/(int_0^(pi//2)(sin x)^(sqrt(2)-1)dx) is

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

The value of int_(0)^((pi)/(2))x sin x dx is equal to -