Home
Class 7
MATHS
" 5."a^(2)b^(2)x^(2)-(4b^(4)-3a^(4))x-12...

" 5."a^(2)b^(2)x^(2)-(4b^(4)-3a^(4))x-12a^(2)b^(2)=0,a!=0" and "b!=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Using quadratic formula,solve the equation a^(2)b^(2)x^(2)-(4b^(4)-3a^(4))x-12a^(2)b^(2)=0

(a+b)^(2)x^(2)-4abx-(a-b)^(2)=0

If p is the length of perpendicular from the origin on the line x/a+y/b=1 and a^(2),p^(2),b^(2) are in A.P., then (A) a^(4)+b^(4)=0 (B) a^(4)-b^(4)=0 (C) a^(2)+b^(2)=0 (D) a^(2)-b^(2)=0

Applying formula of quadratic equation, solve the following equations. a^2b^2x^2 - (4b^4 - 3a^4)x - 12a^2b^2=0 .

If a,b,c are distinct,then the value of x0quad x^(2)-aquad x^(3)-b satisfying det[[0,x^(2)-a,x^(3)-bx^(2)+a,0,x^(2)+cx^(4)+b,x-c,0]]=0 is c (b) a (c) b(d)0

The radius of the director circle of the hyperbola (x^(2))/(a(a+4b))-(y^(2))/(b(2a-b))=12a>b>0 is

If A=[(1,2,-3),(5,0,2),(1,-1,1)],B=[(3,-1,2),(4,2,5),(2,0,3)] and C=[(4,1,2),(0,3,2),(1,-2,3)] , then compute (A+B) and (B-C) . Also, verify that A+(B-C)=(A+B)-C .

If A=[(1,2,-3),(5,0,2),(1,-1,1)],B=[(3,-1,2),(4,2,5),(2,0,3)] and C=[(4,1,2),(0,3,2),(1,-2,3)] , then compute (A+B) and (B-C) . Also, verify that A+(B-C)=(A+B)-C .

If A=[(1,2,-3),(5,0,2),(1,-1,1)],B=[(3,-1,2),(4,2,5),(2,0,3)] and C=[(4,1,2),(0,3,2),(1,-2,3)] , then compute (A+B) and (B-C) . Also, verify that A+(B-C)=(A+B)-C .